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Motivating concepts

Electric generation capacity additions by technology (1950-2013) =
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Motivating concepts

Wind & transmission
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Approach

Cooptimization: the simultaneousidentification of 2 or more classes
of related infrastructure decisionswithin 1 optimization problem.

Make investment & ~ G&T Investment costs |

retirement decisions + Fixed O&M Costs

to MINIMIZE » PRESENT +VarO&M Costs
WORTH | + Fuel Costs =
+ Reserve costs

+ Environmental Costs

—

SUBJECT TO: |
Investment constraints

Operational, planning, environmentebnstraints
Uncertainty characterization




Approach

It is useful when decisions for two infrastructure classes are interdependent.

Generation Expansion Plan (GERjansmission expansion plan (TEP)
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Expansion
plan

Expansion
plan




Mental picture

A Not predictive
A Rather, exploratory!

A Enables identification of most economic desic
subject to Imposed constraints & how design:
perform over specified conditions.

A Comparative interpretation is useful, e.g.,
compare cost of meeting a cleaamergy goal
with or without transmission investment. 7
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The optimization is muHperiod over the planning horizon, generally withperiod petryear.

The objective function is the net present worth of all operation and investment costs over the planning horizon.
End effectaddressed/ia use o#10 additional yearsf final year operation cost.

Load is modeled for each of 4 seasons ussMjload blocks per season.

Similar operating conditions, in terms of load levels and wind/solar levels, are assumed to be identical.
Loadgrowth modeled via peak and energyowth.

Wind/solar/hydroresource data is synchronized with load blocks

O N O U~ Nk

Generation operation cost modeled with VOM, FOM, energy cegll.F/cont reserve costs, ramp rates, & emissions.
10 Asingle dispatch of entire EI/WECC is used, augmented by hurdle rates betweennegeomg (identifiedbesteconomics).
11.Reserve constraints modeled regionally, interconnectiode, or nationally.

12.Reserve sharing requires deliverability constraints.

13.1 min, 10min, 30min reserve modeled as function of variability; variability a function of load & wind/solar penetration|
14. Contingency reserve modeled as largest contingency within the region in which reserve requirement is enforced.
15.C2NJ SIFOK 2R 060ft201 9 NBIAZ2YyZT LA IFTYyyAy3d NBASNWS AYLR
16. Retirements can occur in three ways: forced, @fidife, or based on cost (unit FOM+VOM exceeds savings from using |
17.Generation investments modeled as technology and locasipecific investment cost pddW, with continuous variables.

18. Existing/candidatetransm modeled w/ impedances. Candidateansm modeled disjunctively (integer variables).

19. Multiple DC& ACtransmtechnologies with cost a function téchnlgy length, subs, terminals; only DC crosses seams.
20. ACtransmcapacity a function of length between substations per St Clair curve; substations separated by < 200miles
21.Line losseapproximatedas linear function of flows




- Modeling - Network
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THE WESTERN INTERCONNECTION

~20,000 Buses 350 zones 66 zones ~60,000 Buses

The problem is mixed integer linear program, modeled o
20yrs, computational tractability prohibits large networks



Modeling ¢ operating blocks

5. Loadis modeled for each of 4 seasons usib@20load blocks per season.
6. Similar operating conditions, in terms of load levels and wind/solar levels, are assumed to be identical.

«  Basedonlyon

% \ ~ load levels. Better way: Best way:

: — clustering of clustering of
load, wind & line flows.
solar levels.

| LOAD.

Percent of time 100

SOLAR



Modeling ¢ resources

12.1 min, 10min, 30min reserve modeled as function of variability; variability a function of load & wind/solar penetration.

REGULATING :-RegUpRsrvs
RESERVES (1 MIN) IRegDownRsrvs

|
LOADFOLLOWING  LFUpRstvs

> glmin netload standard deviation]
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|

(LOMIN) (FOownRsrys_ 4 > fiomin netioad standard deviation
Provided by contr‘cu;able gen Reflectnetloadvariability; change
and/or demand; procured in the  with amount & geediversity of
market (they cost money!). wind/solar.

These constraints preveninder-investment in flexible resources,



Modeling ¢ transmission

18. Existing/candidatetransm modeled w/ impedances. Candidatieansm modeled disjunctively (integer variables).

¢CKS AdLALISEE: YZKS{ aRAMISHN DI

approximate evaluation slow accurate evaluation
Bus 1 Bus 2
€ ) I
'_ M
33 Integer variables.

A mixed integer linear
program (MILP), and
therefore very slow!

Continuous variables.
A linear program (LP), Bus3
and therefore very fast! @lp
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Modeling ¢ transmission

18. Existing/candidatetransm modeled w/ impedances. Candidatieansm modeled disjunctively (integer variables).

Nonlinear model
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Application- lowa

MidAmerican Energy wants to reach
85% wind by 2020, 100% thereatfter.
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Min-cost 20Yrexp plan w/growth in load/exp, increasing Ccost
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